
Implementing Complex Valued Neural Networks

Alexander MacFarlane
djmacfarlanez@gmail.com

Abstract

Popular neural network frameworks like PyTorch and Keras with TensorFlow
provide limited support for CVNNs. In this paper, we present an implementation
of CVNNs using custom layers and activation functions in Keras with TensorFlow,
taking advantage of TensorFlow’s support for complex tensors. We evaluate the
implementation on several benchmark datasets, including MNIST, Fashion MNIST,
and audio classification tasks. Our experiments show that CVNNs can achieve
competitive performance with real-valued neural networks, while offering the
potential for improved efficiency and applicability in domains where complex
values are prevalent.

GitHub:
https://github.com/DJMacFarlane/Complex-Valued-Neural-Nets

1 Introduction

Complex valued neural networks (CVNNs) offer several potential advantages over real valued neural
networks (RVNNs). By incorporating both phase and magnitude in each value, CVNNs allow for a
richer representation of data. This increased information content in each input and parameter can
lead to a reduction in the number of parameters, subsequently lowering the likelihood of exploding
and vanishing gradients while also reducing the need for regularization. Furthermore, some types of
data are naturally suited for representation using complex numbers.

CVNNs hold great promise in domains where complex values are already extensively utilized, such
as quantum computing and signal processing. Outputs from Fourier transforms and other complex
representations can be directly fed into the network, eliminating the need to separate or remove
information from each value as required with RVNNs. Additionally, certain complex transforms and
filters can be applied to images, thereby reducing the need for convolutions in image classification
tasks1.

Despite these advantages, many popular neural network frameworks, such as PyTorch and Keras
with TensorFlow, offer limited support for complex valued neural networks by default. Nevertheless,
TensorFlow does provide support for complex tensors, which enables the implementation of CVNNs
by defining custom layers. In this project, we take advantage of this functionality to explore the
potential of CVNNs further.

2 Related Works

Akira Hirose (2012). Complex-Vaued Neural Networks, 2nd Edition

This book provides an overview of complex valued neural networks and some applications. Much of
the implementation is based on concepts from this author’s works.

1See Ko et al. 2022

Course project for UBC CPSC 440/540, April 2023.

https://github.com/DJMacFarlane/Complex-Valued-Neural-Nets


Manny Ko et al. (2022). CoShNet: A Hybrid Complex Valued Neural Network using Shearlets.
arXiv: 2208.06882 [cs.CV]

In this paper they explore shearlets and CVNNs in image processing to reduce the need for
convolution, increase efficiency and improve performance. This is an excellent demonstration that
CVNNs are worth investigating.

Ryan Yu et al. (2022). Biologically Plausible Complex-Valued Neural Networks and Model
Optimization. Ed. by Ilias Maglogiannis et al. Cham

The primary motivation for this project was the potential of CVNNs to more accurately approximate
biological networks. The paper investigates CVNNs, which are designed to be more similar to
biological neural networks than their real-valued neural network (RVNN) counterparts, demonstrating
superior performance in certain tasks. However, the paper’s main drawback lies in its reliance on
gradient descent as a training method, as this is likely an unrealistic learning mechanism for biological
systems (Hinton 2022).

3 Description

In order to implement complex valued neural networks we defined the following custom layers and
activations for keras. Keras and TensorFlow do support Wirtinger derivatives so there is no need to
modify the backpropagation methods.

3.1 Layers

1. ComplexDense: A dense layer that takes complex or real inputs and outputs complex
outputs.

2. ComplexConv2D: A 2D complex convolution layer that takes complex or real inputs and
outputs complex outputs.

3. ComplexConv1D: A 1D complex convolution layer that takes complex or real inputs and
outputs complex outputs.

4. ComplexDropout: A complex dropout layer that takes complex inputs and performs dropout
separately on the real and imaginary parts.

5. ComplexMaxPool2D: A complex max-pooling layer that takes complex inputs and outputs
complex outputs.

6. ComplexAvgPool2D: A complex average-pooling layer that takes complex inputs and
outputs complex outputs.

7. ComplexLayerNormalization: A complex layer normalization layer that takes complex
inputs and outputs complex outputs.

8. ComplexUpSampling2D: A complex upsampling layer that takes complex inputs and
outputs complex outputs.

3.2 Activations

1. abs_softmax(x): This function computes the softmax of the absolute values of the input
tensor x. The softmax function is applied to the absolute values of the elements, normalizing
them to create a probability distribution.

2. real_softmax(x): This function computes the softmax of the real parts of the input tensor x,
which has complex elements. The softmax function is applied to the real parts, normalizing
them to create a probability distribution.

3. imag_softmax(x): This function computes the softmax of the imaginary parts of the input
tensor x, which has complex elements. The softmax function is applied to the imaginary
parts, normalizing them to create a probability distribution.

2

https://arxiv.org/abs/2208.06882


4. polar_softmax(x): This function computes the softmax of the angles (phases) of the input
tensor x, which has complex elements. The softmax function is applied to the angles,
normalizing them to create a probability distribution.

5. cmplx_rrelu(x): This function applies the Rectified Linear Unit (ReLU) activation function
only to the real parts of the input tensor x, which has complex elements. The imaginary
parts are left unchanged.

6. cmplx_crelu(x): This function applies the Rectified Linear Unit (ReLU) activation function
to both the real and imaginary parts of the input tensor x, which has complex elements.

7. polar_relu(x): This function applies the Rectified Linear Unit (ReLU) activation function
to the magnitudes (absolute values) of the input tensor x, which has complex elements. The
phases (angles) are left unchanged.

4 Experiments

4.1 MNIST

To test the implementation we do a trial run on MNIST data set to verify the implementation is
functioning. For the real neural network we use 32 filter 4 by 4 kernels with softmax output layer.
The complex network has 16 filters of 4 by 4 kernels to halve the number of parameters. CVNNs do
not offer much benefit in a simple case like this, but is a convenient test set.

Figure 1: As expected we get similar performance.

3



4.2 Fashion MNIST

We also tested training on the 2D fourier transform of Fashion MNIST data set (Xiao, Rasul, and
Vollgraf 2017)

Figure 2: For complex case we used fourier transform values directly.

4.3 Audio

4.3.1 Dog versus Cat Audio

After training on images we downloaded a simple dataset of cat sounds vs dog sounds using complex
valued outputs of tf.signal.stft(waveform) as inputs to a convolutional neural network.

Data set here https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs

Figure 3: Given the small size of the data set we overfit quickly.

4

https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs


4.3.2 Emotion Classification

Using a subset of the Toronto emotional speech set (Pichora-Fuller and Dupuis 2020) we trained a
complex valued neural network on the spectrogram (complex valued) to categorize audio into classes
based on predicted emotion of the speaker.

Figure 4: We achieved very quick convergence.

Figure 5: The model sometimes confused happy with pleasant surprise.

5



5 Discussion

Our experiments on various datasets, including MNIST, Fashion MNIST, and audio classification
tasks, demonstrate the potential of CVNNs as a viable alternative to traditional RVNNs. In the
MNIST experiment, we observed that the CVNNs with fewer parameters performed competitively
with the RVNNs. Furthermore, when applying CVNNs directly to the 2D Fourier transform of the
Fashion MNIST dataset, we achieved satisfactory results, showcasing the ability of CVNNs to handle
complex input data effectively.

In the audio classification tasks, we tested CVNNs on both cat and dog sounds and emotion classifica-
tion using a subset of the Toronto emotional speech set. In both cases, we observed rapid convergence
and competitive performance. However, overfitting occurred quickly in the cat and dog audio dataset
due to its small size. In the emotion classification task, we got excellent results.

The results of our experiments indicate that CVNNs can achieve competitive performance with
RVNNs and, in some cases, provide improved efficiency and applicability in domains where complex
values are prevalent. By implementing custom layers and activation functions in Keras with Tensor-
Flow, we have taken advantage of TensorFlow’s support for complex tensors, allowing us to explore
CVNNs more in the future. Though we did not have enough time to experiment with complex valued
outputs or complex transormers.

Future work on CVNNs may focus on optimizing the architecture, incorporating more sophisticated
regularization techniques, and exploring additional applications in areas such as quantum computing,
signal processing, and image processing. Additionally, it would be interesting to investigate the
potential of CVNNs in approximating biological networks more accurately, as alluded to in the
Biologically Inspired Complex-Valued Neural Networks paper (Yu et al. 2022). As complex numbers
may allow for easier encoding of frequency and phase of spiking patterns of neurons.

6



References
Hinton, Geoffrey (2022). The Forward-Forward Algorithm: Some Preliminary Investigations. arXiv:
2212.13345 [cs.LG].

Hirose, Akira (2012). Complex-Vaued Neural Networks, 2nd Edition.
Ko, Manny, Ujjawal K. Panchal, Héctor Andrade-Loarca, and Andres Mendez-Vazquez (2022). CoSh-

Net: A Hybrid Complex Valued Neural Network using Shearlets. arXiv: 2208.06882 [cs.CV].
Pichora-Fuller, M. Kathleen and Kate Dupuis (2020). Toronto emotional speech set (TESS). Ver-

sion DRAFT VERSION. DOI: 10.5683/SP2/E8H2MF. URL: https://doi.org/10.5683/
SP2/E8H2MF.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms.” CoRR abs/1708.07747. arXiv: 1708.07747. URL:
http://arxiv.org/abs/1708.07747.

Yu, Ryan, Andrew Wood, Sarel Cohen, Moshick Hershcovitch, Daniel Waddington, and Peter Chin
(2022). Biologically Plausible Complex-Valued Neural Networks and Model Optimization. Ed. by
Ilias Maglogiannis, Lazaros Iliadis, John Macintyre, and Paulo Cortez. Cham.

7

https://arxiv.org/abs/2212.13345
https://arxiv.org/abs/2208.06882
https://doi.org/10.5683/SP2/E8H2MF
https://doi.org/10.5683/SP2/E8H2MF
https://doi.org/10.5683/SP2/E8H2MF
https://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Introduction
	Related Works
	Description
	Layers
	Activations

	Experiments
	MNIST
	Fashion MNIST
	Audio
	Dog versus Cat Audio
	Emotion Classification


	Discussion

